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We study effective-medium approximations for linear composite media by means of a path integral formal-
ism with replicas. We show how to recover the Bruggeman and Hori-Yonezawa effective-medium formulas.
Using a replica-coupling ansatz, these formulas are extended into ones which have the same percolation
thresholds as those of the Bethe lattice and Potts model of percolation, and critical exgen@retadt=2 in
any space dimensia=2. Like the Bruggeman and Hori-Yonezawa formulas, the obtained formulas are exact
to second order in the weak-contrast and dilute limits. The dimensional range of validity of the four effective-
medium formulas is discussed, and it is argued that out formulas are of better relevance than the classical ones
in dimensionsd= 3,4 for systems obeying the nodes-links-blobs picture, such as random-resistor networks.

PACS numbegps): 05.10—-a, 05.40--a, 05.50+q, 87.18.Sn

[. INTRODUCTION edge, the Bruggeman and HY effective-medium formulas are
the only ones obtained from the equations of electrostatics in
Among various effective-medium formulas used to modelcontinuous media which are able to describe, at least quali-
the effective behavior of random conducting linear compostatively, the overall features of a percolation transition in any
ites, the symmetrical Bruggeman formyli 2] is undoubt-  dimension. One intriguing question concerns the possibility
edly the most popular. Applied to an insulator-conductor bi-of deriving alternative effective-medium formulas from a
nary mixture, it predicts a percolationlike transiti@-6] for ~ continuum formulation, which do not lead to the seemingly
a volumic fraction of conductop,=1/d, whered is the unavoidable values=t=1 andp.~1/d. As we show in this
space dimension. The critical exponents s&ret=1, and its  paper, such a possibility exists. Our starting point is the path
critical properties are thoroughly discussed in Réf. This  integral approach recently put forward by Batémey and
formula can be interpreted in two ways. On the one handQrland[18], where the effective-medium problem is recast in
Milton has shown 7] that it yields the exact effective con- a functional form. The problem reduces to compute a free-
ductivity of anad hocideal medium built with a particular energy: roughly, the logarithm, averaged over the disorder,
hierarchical structure. On the other hand, the Bruggeman folef a functional integral of Boltzmann-like weights, over al-
mula can be seen as a fir@ine-body self-consistent ap- lowed field configurationgwhich include boundary condi-
proximation to general disordered symmetric cell materialgions). The average of the logarithm is carried out with the
[8], to which systematic corrections could be worked out.replica methodalready used in Ref12)). In Ref.[18], the
However, the Bruggeman approximation is very differentauthors showed that the path integral formulation allows one
from a mean-field theory of random conducting media. In-to easily recover the second-order weak-disorder expansion
deed, an exact mean-field calculation on the Bethe latticef the effective permittivity of nonlinear compositg9].
[9,10] predicts a percolation threshaid~ 1/(2d) and expo- However, this formulation has not yet been used to derive
nentss=0 andt=3. These exponents are exact@*6, as  self-consistent estimates. In this paper, we show how this can
well as the asymptotic behavior of the threshold witen be done. After a presentation of the functional approach to
—oo (at least, for the hypercubic latti¢€] to which a con-  the homogenization problem, and of the replica met{&et.
tinuum theory naturally compard4.1]). These values are Il), we discuss self-consistent effective-medium approxima-
also obtained in a more systematic mean-field theory for rantions (Sec. Ill). As usual in such approximations, a back-
dom resistor networkgl2]. ground reference medium is introduced under the form of an
The remarkable discrepancy between the mean-field reansatz for the energy of the system, whose parameters are to
sults and Bruggeman’s formula indicates the ambiguous stde determined self-consistentigec. Il A). The unusual fea-
tus of the Bruggeman theory. In fact, in spite of variousture here is that the ansatz contains a replica-coupling term,
(mostly perturbativeinvestigationd13—15 in order to de- whose significance is explaine@Sec. Il B). The self-
termine precisely its theoretical status, the reasons for theonsistency conditions to determine its parameters are dis-
peculiar critical behavior of Bruggeman’s formula have notcussed next, and two types of effective-medium formulas are
been completely cleared up. More surprisingly, another selfidentified(Sec. Il O: one in which the replica couplings are
consistent effective-medium approximatiph3,16 due to  cancelled(hereafter referred to as “type 1,’and the other
Hori and YonezawaHY), obtained for the same type of one with nonzero replica couplingStype 2" ). Two differ-
media by means of a completely different approximationent approximations are then worked out for each t{ec.
scheme(and later derived by functional methofis7]), ex- V). It is found that type 1 generates the Bruggeman and HY
hibits the same exponents=t=1 and a similar threshold formulas, whereas type 2 brings in two new effective-
behaviorp,=1-exp(-1/d)~1/d. medium formulas which are “replica-coupling counterparts”
Apart from phenomenological variants, and to our knowl-of the previous ones. They possess exponertf,t=2,
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and a thresholgp.~1/(2d) (Sec. IV B 3. These formulas The minimum can be interpreted as the ground state energy
are discussed in Sec. V, where numerical results are pressociated to the partition function
sented before we conclude in Sec. VI.
Z= J DE e AVIEL (6)
II. PATH INTEGRAL FORMULATION

OF THE PROBLEM .
where we have used the shorthand notation

The effective properties of a random conducting medium
can be defined with the help of the total dissipated power in
the medium20—-22. In terms of the electric fiel&(x), the
dissipated powew in the system of volum& reads

DE="DE §(E— Eo)f D S(E+V ) (7)

for the constrained functional measure. We need to compute
the average of the logarithm of E(6). In order to proceed,
VV[E]=f dx W (E(x)), (1) we introduce replicag23,24 and use the identityIn Z)
\% N H n
=lim,_o({Z"y—1)/n, hence

wherew, is the local power density. 1
Hereafter, we take the volume V of the sample equal to 1 W*=—lim lim —((Z")—1). (8)
In heterogeneous materials, depends on constitutive pa- B—* n—0
rameters randomly varying from point to point. For linear o )
conducting media with (x) = o(X)E(x), whereo is the lo- ~ The limits do not commute. The equivalent form
cal random conductivity angis the electric current, we have

. . 1 N
W, (E(x))= o(X)E?(x)/2. 2) W = —;ITOC r|1ITO @In (z" (9)

In the analogous effective permittivity problem the dissi-can be used as well. The replica method relies on the fact
pated power is replaced by the stored ener(¥) E(x)/2 (& that one can easily compute the replicated partition function
is the permittivity. For this reason, we shall refer @, as  (Z") for n integer, and subsequently take the limit0.
the “energy density” hereafter. In the nonlinear problem, The main quantity of interest therefore is
w,(E) is a nonquadratic function d&.

An alternative to solving Maxwell’s equations is to mini- no ’
mize the total energyW subjected to the two constraints (zn=| 11 DE“< e‘ﬁgl W[Ea]>. (10
[20,21): (i) E= —V ¢ and(ii) E=Ey; here, the bar stands for o«
a spatial average, ari, is a constant applied electric field.
The minimum,W* (E,), is expected to be self-averaging, as
it occurs for the free energy in disordered systems. We cal

Denoting the replicated measure BYE®)=11"_,DE?, the
veragg Z") can be written in terms of an “effective Hamil-

therefore write onian”
W*(Eg)=/ min WE] 3 (z"= f BE")e B (1)
E=Eg
E=-V
’ with
where the brackets ) denote the disorder averagh™ (Ep) \
is the energy in a homogeneous medium characterized by an 1 E "
effective constitutive law20] He=— 73'” ex _Bazl WIE] ] ). (12)
()= IW* (Eo) o E 4) For simplicity, we restrict ourselves to cell materials
J JEq eff=0- where the local properties are statistically uncorrelated from

site to site. Volume integrals may then be identified with
The second equality defines the effective conductivity of thesums over sitegeach pertaining to one cgthccording to the
medium. correspondencédx«—uvX,, wherev is an infinitesimal cell
The problem thus reduces to computing the average of theolume (which defines the microscopic correlation length of
constrained minimum of a functional of the electric field. the problem. ThenH, simplifies to
The electric field derives from a potential and has a fixed

mean value. We can rewrite the constrained minimum in Eq. 1 [dx .
(3) using a path integral He=—75 - In{ ex —ﬂvé W (E“(x))| ). (13
. 1 Note that our discussion in Sec. Il will be specialized to
min WE]=— lim Eln f DED¢ S(E+V¢) binary disorder for which the constitutive parameters can
E=E B—x -
E— —v0¢ take only two valuegbut the proofs are genejallhat is, we

o assume that the local energy density is distributed according
X S8(E—Eq)e  PME] (5)  to the probability distribution
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P(w=wy(E))=psw—w,(E))+qsw—w,(E)),

(14
(whereg=1—p). With this choice,
1 [ dx .
He=— E 7In[ p exp{ —,Bvazl w1 (E“(X))
+q exp[ B 2, Wa(E(X) ’ : (15

SELF-CONSISTENT EFFECTIVE-MEDIUM. ..
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where
Wy(Ep) li ! InZ (20)
=—lim —InZ,,
o\~o B nB 0
BHOO
) 1
AW(Eq)=— lim —In(e™ e~ T (21)
n—0 nﬁ
ngoo

The quantity AW(Ey) is difficult to compute(an exact
evaluation would lead to the exact result for the effective

The above formalism applies to any form of the energy denconductivity, and we have to resort to approximations.

sity, and in particular to nonlinear media5—2§. A method A natural self-consistency condition fat, is
for extracting from the path integral the second-order weak-

contrast perturbation expansion of the effective potential
W* (Ep), for nonlinear media, has been introduced in Ref.

AW(Eq)=0, (22

[18].

IIl. PRINCIPLE OF SELF-CONSISTENT
APPROXIMATIONS

which completely determines{, in the case where it de-
pends on one single parameter, as in Etp). For more
general choices of{y with several free parameters, H§2)

only provides a relation between these parameters, and addi-

tional considerations are in order to determine them all. First,
In this paper, we consider the linear problem only. Thiswe have to determine precisely the form of the ansatz to be
section is devoted to self-consistent approximationg\ta used in our calculations.
We first present the principle for building such approxima-
tions through the introduction of a trial Hamiltonian. Then
we discuss the choice of a trial Hamiltonian with replica
couplings. Finally, we explain how to exploit these replica
couplings in order to obtain two kinds of self-consistent for-
mulas.

B. Replica couplings and choice of the ansatz

We deduce here the form of the trial Hamiltoniéty,
from an analysis of the effective Hamiltonidi,. Eq. (12)
shows that the effective Hamiltonian is nonrandom but that
the average over disorder introduced a coupling between dif-
ferent replicas. The meaning of these couplings is more
transparent if we carry out an expansion of Et) around

The common ingredient to the approximations discusse¢he average fielE=E, as in the weak-contrast expansion
below is the introduction of a linear comparison medium[1g]. With ¢,=d/JE; and AE*=E“—E, we have
described by a trial Hamiltoniak, which is quadratic in the
electric field and nonrandom, e.g., the one-parameter ansatz

A. Overview

1
He=n{W,( E0)> + 2

20:, f dx aijAEi‘“(x)AEj“(x)

Hf%f dx S E2(x), (16)
“ —BaEy dx dy ¢2(x—y)AEM(X)AE](y) |+ -,

where 0g>0 is to be determined by an appropriate self-
consistency condition. This Hamiltonian is that ofrapli- (23)
cated homogeneous medium, but without couplings between,
replicas. Its meaning and that of other possible choices with
replica couplings are discussed below.

The partition function(Z") can be rewritten as

here

aj; = (5 Wy(Eo)), (24)

c(P(x—y) = (awy(Eq) 3wy (Eq)) —(3iWy(Eg) )Wy (Eo)).
f i‘)( Ea)efﬁ(ﬁefHO)efﬁHO (25)

(2= D(E®)e™ P, The first nonzero replica-coupling term is proportional to
Bc®). We thus see that the coupling between replicas acts
(17) only within clusters defined bg-point connected correlation
functionsc(™, and accounts for the fluctuations of the elec-
tric field in these clusters. The replica coupling would vanish
if there were no disorder at all. In the limit where the size of
the region defined bg(® shrinks to zero—which means that
the system is observed at a macroscopic level, we can ap-

proximate

f D(E*) e FHo

or, with another notation
(Z")y=(e PUtTT0) 7, (18)

where Z, is the partition function associated t,, and
(-)o stands for the functional average with weights
e FMo/Z,. Equation(9) thus reads cP(x—y)=vc{P(0)8(x—y), (26)

W* =Wy +AW, (19 and we recover the expansion
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where volume averagds’ have been replaced by statistical
ones, the microscopic sizé¢’® being much smaller than that
of the systemV¥@=1. All the replicas are equivalent, and
the functional averagé ), selects in the limif3— < the real
e @7 field in the medium. Hence, settingE=E—E,, the previ-
ous equation leads to

1
He:r‘(Wx(Eo)Hgf dx| X a; AEF()AES(X)

—vB> cP(0)AE(X)AE)(X)
a,y

which could directly be obtained from El3). The pres-

ence ofv in front of the replica coupling term is the macro- (AE%) Q

scopic remnant of a microscopic average having been taken £2 = (33
within a two-patrticle cluster, of centerand volumev. This 0 %0

discussion therefore enlightens a relation between replica, . . . L
coupling and the electric field fluctuations within clusters. which implies thatQ=0. When Q#0, the electric field

Expansion (27) suggests a two-parameter replica- ﬂugtu_?;es ': ﬂt]; n:ﬁd:u;n,r wrherreasnlét 'S r%nlg(i)mnl \‘:VVEI@EI
symmetric ansatz of the form =Y. 1he ansalzi, therefore represents a mediu chis

homogenizedbecause it is nonrandgnbut which nonethe-

1 less accounts for field fluctuations. We thus expect unusual
Ho=75 > | dx MVErE?, (28)  effective medium approximations when the replica coupling
«v Q is nonzero.

where
) C. Self-consistency
ay — —
M 7004y~ 0 SQE;. (29 Up to this point the discussion focused on the ansatz it-
The free parameters are, and Q. Note thatQ has the di- self, without referring tdH, . In particular,oy was treated as
mension of a squared conductivity, because it is related to g mere num.be.r. We now _d|_scuss what happen; when self-
guantity relative to two points. For simplicity, the ansdiz conS|stency 1S imposed, within some approximation sc_:heme.
is diagonal in the Euclidean vector space. However, we tried "€ medium is made dfl phases labeled by, of respective

calculations with a tensorial structure reproducing thaa;pf cond_uctivitieS(rIV ! agsvvc&lurE%conr::_err:t_r atiors, . The sel_f-
and Ci(jZ) in Egs. (24) and (25); but, apart from a different consistency relatiod W(E,) =0, which imposes constraints

normalization forQ, no differences showed up in the final _?_?1 tht\e/vilrls\a/\\';z, d%terrq'r??aia functiorQ=Q(¢o.{c}).
effective-medium theorie¢as far as linear media are con- envv=Wo and, wi q.4),
cerned.

An interesting feature of the ansaf29) is that, though Ootf= 00| 1— Qoo {a.}) _ (34)
being nonrandom, it embodies underlying disorder through aé
its replica couplings. In order to understand this point, we
computeWy(Ep) given by Eq.(20) Suppose now thatg= oy({o,}) is determined by an ad-
ditional condition(to be found precisely belowUsing the
1 - .
Wo(Eq)= — lim @In f PE exr{ B gf dx exact formulg30] (cf. Appendix A
n—0
B— <AE2> _ IO eff
= _Ey P (35)

X

00>, E?—vBQEZY, E“-EVH. (30)
“ “r the fluctuations of the electric field deduced from E8d)

After writing E=E,—V ¢, and going to the Fourier trans- ¢&n be written
form of ¢ [29], we arrive at

AE? J
1 < E2>:Uéﬁ(00)(§V: 0.;0—1>
Wo(Eg) = — |im0 @ln (DetM) ¥ 0 v
b Q 1[4Q Q
A el
Xex _EE Ma'yE(%):| o
ay

where the last derivative is performed at constapt This
expression distinguishes between different contributions to
the field fluctuations(i) the first term represents fluctuations
coming from the “macroscopic” background effective me-
Carrying out the derivative of E¢30) with respecttarg,  dium oy; (i) the second one is that already found in Eq.
we obtain (33), and would be the only one @ were independent from
oo, and if oy were equal to{o), the trivial value corre-

1 2\ 2
=§0'0(1— Qlap)Ep. (31

1 Q sponding to a nonfluctuating reference medium for a multi-
- a2 _F2, < pE2
fim n<§ (E >>0 Bot 250 (320 phase composite, cf. Appendix Aji) and finally a third

B—c term comes from the dependence@bn oy and o, . Both
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last terms are, according to the interpretation of replica couwe arrive at
pling developed in the previous section, of “microscopic”
origin.

We now turn to the determination aefy({o,}). A first
obvious self-consistency condition fer, is Q=0, so that
oe= 0. The effective-medium formulas obtained this way The conditionAW(E) =0 yields
are referred to as “type 1” hereafter. As shown below, to

1 2. 4 2
AW(Eq)= 5(Aop)Eq+ 5 (ou)Ep. (42)

this type pertain the Bruggeman and HY formulas. q=— (Aow) 43)
“Type 2" effective-medium formulas are obtained by (ow)y

taking o as the solution ofr (o) =0, and by using this

value inog;. According to Eq.(36), this procedure makes 2. Type 1 formula: Bruggeman's

the effective-medium insensitive to the fluctuations gener- Letting g=0 amounts to imposingAo)=0, which is
ated in the reference medium, so that relevant fluctua- nothing but the Bruggeman equation
tions only come fromQ.

O—0gp
IV. TWO APPROXIMATIONS <m> =0. (44)

In this section, the ideas introduced above are used withi
two different approximations ta W(E;), based on the an-
satz (28), (29). For each approximation tAW, “type 1”
and “type 2” formulas are obtained. Herafter= Q/ag, SO

Fhe Bruggeman equation can also be writtgn)=1, or
oo=(oun) if d#1, orag=(ou)/{u). The last expression is
suitable for computingo iteratively (starting, e.g., from
go=(0)) in any dimension. The Bruggeman conductivity

that Oeff= 0o possesses a percolation thresh@g=1/d, and
_ . critical exponents=t=1 [4].
Ter=0o(1-Q). (37 The fluctuations computed from E5) read
A. One-impurity approximation (A E2> 0'o<,U«2>
T H b H H ) b LR} = . (45)
We first consider a “one-impurity’{or “local” ) calcula- Eg (ou?)

tion. The Bruggeman formula emerges as the ‘“type 1”
effective-medium formula in this approximation, which is
not suprising since it can be seen as a one-tHelf- ]
consistent theory[13,15. We now letq#0 and given by Eq(43) and oeq(oyg)
=0o(1—qg(0oy)). The equationry(oo)=0 reads

3. Type 2 formula

1. Approximation scheme

2 2 2

The approximation forAW(E,) [Eq. (21)], detailed in 0:<‘T'“> (u)(o’pn®)—(opNon) . (48)
Appendix B, is a one-impurity approximation where interac- (m) 2d{ou)?
tions between different points are ignored. Let us denote by
w, the trial Hamiltonian density, which depends on all theLike Bruggeman's, this equation is easily solved by itera-
replicas, defined from Eq$28), (29) by tions starting fromoy= (o). The iterations then always con-
verge to the physical solution, which we denotedfy. The
effective conductivity thus ige= o (1—q(og)). To study
its critical behavior, we consider a binary mixture, where
) _ ) o = ¢y with probability (1-p), ando= o, with probability p.
Here and in Appendix B, the notatign] indicates a depen- | the conductor-superconductor limit where— < we find,

HOEJ dx wo[ E(X)]. (38

dence with respect to all the replicas. Setting settingp,=1/(2d— 1),
1_
AWE(X)]=2 W(E“())=W[E(X)], (39 L S I il
X ~ X (O p(d—l) 1_p/pc 1 (p<pc) (47)
the one-impurity approximation results in and
B 1 1-dp—(1—p)(1—p/
<e B(He HO))021+—<(e 5”AW><[E(X)]>O_]_>_ (40) o= 0_1[ p \/( p)( p pc)] (p<pc).
1% p2(d_ 1)2
(48)

Because of statistical translation invariance, the final result is
independant of the point The right-hand side can be com- e critical concentratiop,, can be interpreted as a percola-
puted exactly for any potentialy in the limit 35— using a  jon threshold, and is the same as that obtained in the mean-

saddle-point method. Settingo=o— o, and field model on a Bethe latticg12] with connectivity z
Ag |- =2d. Since oeg=2(2d—1)o,/(d—1)~(p.—p)° for p

M:(1+ _U) , (41)  =Pc, the superconductivity exponent $s=0. Note, how-

dog ever, thatog displays a square-root cuspgat p. . The criti-
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cal behavior for p>p. is obtained by examining the o
insulator-conductor mixture where, is finite ando;=0. ho(Z):J' due " In(e”"%). (56)
Then 0
p/p.—1 The fami_ly of functionshy is defin_ed in Appendix C. The
o= (,—zm, (49 self-consistencAW(Eg) =0 now yields
Ipe—1)? =— 1+ 57— (57)
O eff= 02% (p>pe)- (50 k dho(1/(day))
. 2 L 2. Type 1 formula: The Hori-Yonezawa formula
Since o~ (P—Pc)~ for p=p., the conductivity exponent . ) ) i
ist=2. We first consider the case with no couplings between rep-
For the special case @f=1, u=0,/o so that Eq.(46) licas, i.e.,q=0. The HY formula foro reads
reduces to op=(1/o)"!, and q=0. Therefore, oy 1
=(l/o)~1, which is the exact result. Like Bruggeman'’s, the ho(1(dog))= — = (58)
formula is also exact to second order in the contrast, in any d’
dimension

and the effective conductivity i&.¢= 0. It can be shown

(03— ()2 that o displays a percolation thresholdp.=1
Oe=(0)| 1= ————+ - ] (51) —exp(=1/d), and exponents=t=1 [16]. Applying Eg.
d{o) (35) and using Eq(C12), the fluctuations read
and in the dilute limit wherde.g) p,<1 (AE?) 2+dhy(LU(day))
P E2  1+dh(1(dog)) 59
Oeff= 01 1+dm+-“ . (52

3. Type 2 formula
In the discussior(Sec. V}, it is argued that because of its
exponents+t, and because it is less trivial than the Brugge-
man formula (especially in the insulator/conductor case
where it does not reduce to a straight Jinghis formula may
constitute an easy-to-handle alternative to the latter in di- Oef(0g) =07
mensionsd=3. Graphical comparisons between different
effective-medium formulas are discussed in Sec. V.

We now consideq# 0 and determined as a function of
oo by Eq.(57). Then

. (60)

2% Gho(Ti(dag))

The equation fowr is o 4(0op) =0; that is, with Eq(C12)

B. Cumulant series approximation 1 hy(1(doy)) .

———=0. 61
d h3(1(day)) (61

In this section, we show how to recover by means of a
cumulant approximation taAW the effective-medium for-

mula of HY, together with its “type 2 counterpart. In order to study the critical behavior af.;, we consider

again a binary mixture where=o,; with probability (1
—p), and o=0, with probability p. In the conductor-
We consider the first-order cumulant approximation superconductor case whete,—, we havehy(1/(doy))
=In(1—p)—oy/(doy) and a similar equation fon;, so that

Eq. (61) reduces to a second-degree polynomial equation. Its
physical solution reads

1. Approximation scheme

<efﬁ(He7’H0)>0: efﬁ<HefH0>0_ (53)

We have then

1 20,
i Ty x _ . (82
AW(E) n"f'onme Ho)o- 4 70T Tt 2dIn(1—p)[1+ Vit 2dIn(1-p)] (62
B—oo

As shown in Appendix C, the calculations here involve anIt is defined forp less than a critical value

expansion in a series of the cumulants of the distribution of po=1—e YD, (63)
o, whose significance has been discussed at length in the ¢

original paper by HY[16]. After some algebra, we obtain Thjs percolation threshold is the same as the one obtained in
(ct. Appendix Q the Potts model at the mean-field level, and in the mean-field
theory of Ref.[12]. Reporting Eq.(62) into Eq. (60), we
AW(Eq) = — [ 1+ dho(1(dorg))]+dq ho(U(dor))}E3,  arfive at
2

= <p.).
where et [1+V1+2dIn(1—p)]? (P<Po)

(64)
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Sinceo e (p.—p)° for p<p., the superconductivity expo- 10
nentiss=0. —— Hashin-Shtrikman
In the opposite insulator-conductor case, where=0 | . Br. (OI type 1)
and o, is finite, the solution fop>p. can only be found 8 —— HY(CStype 1)
perturbatively around the percolation threshold. Expanding —— Ol type 2 y,
the logarithm inhy andh; as ——— CStype2 4
~ 6F 7
In[(1—p)+ pe ™ Uo2/(do0)] %: ///,/
(1) p | o g
:ln(l_ p)+2 —(_) e—luxrzl(d(ro), (65) 4 r ///j//
I1=1 I 1 - p //'4',
and defining 2| e
d=2
(-7t [xdt
AX)=2, ——x'=| —In(1+1), (66)
=1 |2 ot 0 :
0 0.2 0.4 0.6 0.8 1
we find that p
o FIG. 1. Rescaled effective conductivities in dimensiba2 for

ay :4d2A( /il_ D) (p—p)+O((p— pc)z), (67) a binary medium, versus the volume concentapiosf component
Pe Pe 2. The conductivity ratio isr,/o;=10. Highest and lowest solid
and that curves: Hashin-Shtrikman bounds; Br.: the Bruggeman formula
(“type 1,” one-impurity approximation—OLt HY: the Hori-
Yonezawa formula(“type 1,” cumulant series approximation—
= (P—P)?+0(p—pe)d CS); both “type 2” curves are the unique formulas, within Ol and
4d?A(p./(1-py)) CS approximations.

(P=Pe), (68) both the HY formula and its type 2 counterpart, do not re-
where the conductivity exponent fs-2. Hence, as in the duce to the exact resultey=(1/o) * in dimension 1(not
previous “one-impurity” approximation, the replica- SNOWn. This exact resultis also the common value of the HS
coupling ansatz yields critical exponergs0t=2, and an bounds.ford=1. I-.|enc.e, formulas derived from the cumu-
asymptotic dependence of the threshpld-1/(2d) when lant series approximation do not obey the HS bounds in di-
2d>1. One can easily check that this “type 2" effective- mensiond=1. On the other hand, both the Bruggeman for-
medium formula is exact to second order in the weak-Mula and its type 2 counterpart do reduce to the exact result

02

O eff

contrast limit and in the dilute limit. whend=1, and can be seen to always obey the HS bounds

After a few manipulations, we now obtain with E485) whatever d is. The one-impurity approximation scheme
and (57) therefore appears to be of better physical relevance for all

dimensions than the cumulant series approximation.
(AE?) q We now discuss the critical behavior. First of all, the per-
_2_<E> =2q| 1+ 2/ (69) colation thresholds found in the type 2 formulas pge=1
1000
V. DISCUSSION
) ) ] ) —— Hashin—Shtrikman

We plot in Fig. 1 (respectively, Fig. 2 the “type 2" o - Br. (Ol type 1)
scaled conductivities /0, versusp, the volume fraction —-—- HY (CStype )
of material 2, for a dielectric ratio, /o= 10 (respectively, ___ 8;‘3’1”22 /
o,/0,=1000). We also show the Hashin-Shtrikm&nS) 600 - ype //
boundg 31], the Hori-Yonezawa formula which comes from /{}f’"
a cumulant serieéCS) approximation, and the one-impurity % ,(//‘ 4
(Ol) Bruggeman formula. The dimension ds=2. Figs. 3 S 40! /j/,,/
and 4 display similar plots fod= 3. Ve //

For moderate contra¢Figs. 1 and 3 we observe that all //f g
four self-consistent formulas lie close to each other. This is a 200 ¢ 7 ’
consequence of the fact that they are exact to second order i /i d=2
the contrast. Also, for any contrast, the slopepat0 and 7 ’/
p=1 are all identical, which is a consequence of the fact that 0 0 0‘2 04 § 06 0.8 1
they are exact to second order in the dilute lipit-0 (the ' »

expression negr=1 is obtained by replacingby p—1 and
by interchangingr; ando;). We also observe that the HS  FIG. 2. Rescaled effective conductivities in dimensiba2 for
bounds are satisfied in each case considered. However, tleinary medium, versus the volume concentapasf component
formulas obtained via the cumulant series summation, i.e2. The conductivity ratio isr,/o;=1000. Same plots as in Fig. 1.
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10
—— Hashin—Shtrikman 10| d=3 nooT Br. (Ol type 1)
sl T ]}311-Y.(01typel) | A —-—-- HY (CS type 1)
—-=- (CStype 1) ol 5
— Ol'type 2 — type
——— CStype2 o ———- CStype2
6 )
] Y
T A
bm /// Nu" 5t
4 s v
/,/’/ i
L ///' \ %
: d=3 978 \ \\
- // / \\\\ \‘\~ \\.\
“ T TR,
0 0 —
0 0.2 0.4 0.6 0.8 1 0 0.2 04 0.6 0.8 1
p p
FIG. 3. Rescaled effective conductivities in dimensiba3 for FIG. 5. Relative quadratic fluctuations of the field in dimension

a binary medium, versus the volume concentafiosf component d=3 for a binary medium, versus the volume concentafioaf
2. The conductivity ratio igr,/o;=10. Same plots as in Fig. 1.  component 2. The conductivities ang=1, o,= 1000.

—exg —1/(2d)] (cumulant seriésand p.=1/(2d—1) (one and the upper critical dimensiah=6. Indeed, the condition

impurity). These thresholds are the percolation thresholds of ei(70) =0 minimizes the influence of the background me-
the Potts model, and that of the Bethe lattice model, respedlium and, according to the interpretation developed in Sec.
tively. Both thresholds decrease as HJf2when d—, ., rep'llca cquplmg has to do Wlth coupll'ngs between
which is the exact asymptotic. The Bethe and Potts model8€ighboring points. The reason for which the introduction of
are mean-field models, where emphasis is put on fluctuatiors "eplica-coupling ansatz yields the exact thresholds of
in the couplings between a given site and its neighbors. omean—ﬁeld theories will havg to be clgrlﬂed in the future. In
the contrary, in effective-medium theories, interactions beFig. 5, we plot the quadratic fluctuatiofd E*)/(E)? as a
tween impurities are taken into account through the selffunction of p. The fluctuations in the type 2 estimates are
consistent background medium. Such interactions are moi@eatly reduced compared to those of the Bruggeman and
important for low dimensions. Effective-medium theories HY formula. This is consistent with the fact that the influ-
therefore overestimate interactions in high dimensions&nce of the background is reduced. _

whereas mean-field models are expected to underestimate TYPe 1 formulas give exponengs=t=1, while for type 2
them in low dimensions. Above the upper critical dimensionformulas they ares=0,t=2. Mean-field theories yield
where mean-field models are accurate, interactions between0, t=3 which are the exact values fde=6. It is interest-
impurities become irrelevant. According to this discussion,ing to compare these values to exact bounds deduced from
our type 2 formulas appear as hybrids between mean-fielthe nodes-links-blobéNLB) model, in all dimensions. The
and usual effective-medium theories, and are expected to 8LB model is currently accepted as a good one for the back-

mostly relevant in dimensions intermediate betwesnl  bone structure of real random resistor netwofE$ The
bounds read

1000 t=1+(d—2), (708
—— Hashin-Shtrikman
g0 | — Br. (Ol type 1) ] s=1+(2-d)v, (700
—-—-- HY (CS type 1)
—— Ol type?2 where »>0 is the correlation length exponenté
600 | - CStype2 x|p—pc~". They hold for 2<d<6, whereas fod>6 the
=} g right-hand sides in Eq.70) are fixed to theird=6 values.
3 g4 These bounds follow, e.g., from comparing the lower and
© 400! /// upper exact bounds obtained in Rgg2] for the noise expo-
/{,’/ nent « in weakly nonlinear networks, within the NLB
g/ scheme. They are satisfied by simulation resl88. Using
200 | ,//,/' i the usual effective-medium valuss=t=1 in Eq. (70) im-
//: =3 plies the absurd value=0, save ford=2 where a finite
Rl value of v is allowed. Though information about the corre-
0 0 (12 0.4 06 0.8 1 lation length¢ (and therefore about) is not included in the
» Bruggeman nor in the HY formulas, the above bounds show

that, as long as they are meant to model percolating systems
FIG. 4. Rescaled effective conductivities in dimensiba3 for ~ 0beying the NLB picture, these formulas are truly adequate

a binary medium, versus the volume concentapaof component  only in dimensiond=2 — andd=1 where the Bruggeman

2.The conductivity ratio isr,/o,=1000. Same plots as in Fig. 1. formula is exact. As to type 2 formulas, we insert the values
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3 ' mum of og. Both types of theories can therefore be inter-
— G/, preted as extremal theories in the framework of self-
type 2 -—q consistent models built on the replica-coupling ansatz. The

type physical meaning of this interpretation is still not clear.

However, type 2 formulas should not be disregarded as un-
1 : 3 physical because of their showing up as maximal ones: the
i 3 /,//"\ minimization principle states that the dissipated power is

minimized with respect to the electric field; but there is no

‘ reason why an extremization with respect to arbitrary varia-

S ! tional parameters should not lead to a maximum of the dis-

/ sipated power. Equatiori1), (72) explain why for a given

-1 L : : approximation, one always hag/f® '< o%* 2 in Figs. 1-4.
We now consider some points that were not explicitly

treated in the paper. First, we presented the formalism in
FIG. 6. Rescaled effective conductivity.s(oo)/oy, and re- terms of the electric field, from which we obtained a con-

duced replica coupling parametgfo,) Vs o, in dimensiond=3  ductivity oe;. The electric current (or the inductionD),

for a binary medium. In this exemple computed from E%), could be used instead R4fl8]. In such a formulation, the

(43), the conductivity ratio isr, /o, =100, and the volume fraction random constitutive parameter is the resistivip(x)

p of component 2 i9=0.18. The “type 1" effective conductivity — _ 1/o(x) and the constraints arg-j=0 andj_=jo. One

is obtained whery =0, whereas the "type 2 effective conductiv- o computes an effective resistivity;. Both formulations
ity corresponds to the maximum of the curegs(o)- . . : . -
are equivalent, but a given approximation scheme in general

s=0,t=2 into Eq. (70) and deduce thav=1/(d—2), a leads to different results fotro¢ and o= L/pes. Prelimi-
reasonable expression forE 3 only. If we furthermore insist nary investigations of type 2 formulas have been led in this
on havingr=1/2 as in real systems, these heuristic argu-case. These will be presented elsewhere. Finally, we discuss
ments restrict the range of validity of the new formulas tothe natural question about the possibility of replica-
d=3,4. Note, moreover, that only in dimensidr-2 are the =~ Symmetry breaking35]. Replica symmetry breaking intro-
exponents equak=t, because of self-dualit}33]. A for-  duces more free parameters in the ansatz, and the final ex-
mula with unequal exponents therefore is expected to be egremization has to be carried out with respect to several
sentially relevant to dimensiors 3. variables. There is no frustration in this problem, and we
We also quote theoretical bounds fordue to Golden, therefore expect the replica-symmetric solution to be the
valid for hierarchical NLB models: £t<2 for d=2,3 and  only one. In order to test this, we tried a one-step symmetry-
2<t=<3 for d=4 [34]. The above analysis is consistent with breaking solution and did indeed not find any new solution.
these bounds, and can be summarized as a set of prescrip-
tions for using the “best” available effective medium theo-
ries, as far as a nonconflicting critical behavior is concerned: VI. CONCLUSION
for d=1, Bruggeman’s formula, or its type 2 counterpart are
exact; ford=2, the Bruggeman or HY formulas are ad-
equate; ford=3,4, type 2 formulas are applicable; finally,

c,/c,

We presented a functional approach to the calculation of
effective-medium properties of random media. We showed

for d=5 mean-field theories would be the most relevant.gOW to fECOVeFthe Brugg_em?n anthori-Ycine;]aws fo_rn}ulas
Estimates or exact values for the exponents[atg v,s,t) t'y uslmgtspe(il |<\:Nappr|oxm2jz_i lon scdemes_ (; de tz_asw lfmc'
—(4/3,1.3,1.3)_,, (0.88,0.73,2.00). 3, (0.68,0.4,2.4)_,, ional integral. We also discusse e introduction of a

replica-coupling parameter in a Gaussian ansatz, from which
E)?eSSZ:r?p%lozn?:S (1/2,0,3)=6. These values support our different effective-medium formulas were obtained. These

An interesting observation is that actually both type 1 anoformulas appear to be more adequateln3 compared to

type 2 formulas can be given by a variational formulation asthe standard ones by Bruggeman and HY. Because it yields a

sensible result in all dimensions, and fulfills all the con-

type 1_ - straints required to deserve the label of a “good” effective-
Tett — :;r:) el 7o), 7D medium theory, the type 2 counterpart of the Bruggeman
0=q(og)=<1 formula offers an interesting alternative to the latter. Indeed,
it has a percolation threshold equal pg=1/5 in three di-
o= max oe o), (72 mensions. This is closer to values observed in real materials,
09=0 compared to the.=1/3 of the Bruggeman formula which
0=q(og)=1 often constitutes an overestimation.

provided that an unphysical solutians=0 is discarded in
the minimization(71). Indeed, at least in the framework of
the two different models introduced in Sec. IV, the curves
for q(op) andoek(0o) are found to have the form shown in  We gratefully acknowledge H. Orland for stimulating dis-
Fig. 6. The infimum(71) occurs atg=0, whereas the solu- cussions. One of ugv.B.) wants to thank H.E. Stanley for
tion o to the equatioro 4(op) =0 corresponds to a maxi- his hospitality at the CPS, and the DGA for financial support.
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APPENDIX A: QUADRATIC FLUCTUATIONS (—B)k

OF THE FIELD (e‘ﬁ(He‘”0)>o:kZo T((HQ—HO)'%. (B1)

For completeness, we give here the demonstration of Eq.
(35) [30]. Volume averages are identified to statistical onesSince M, is nonrandom, using the Hamiltonian density
Because W*=(1/2)(cE?)=(1/2)2,p,0,(E?),, where defined in Eq(38) andAw,[E(x)] defined by Eq(39) we
(-), denotes an average on the phasen which the con- can rewrite the differencé(,—H, as
ductivity o, is constant, the effective conductivity reads

2 Ho—Ho= | dXAH(x), B2
€. - o= | axameo 52
0

Oeff= EV p.o,

where
On the other handr has to be a homogeneous function of

degree 1 of ther,, whence 1
J AH(x)=— —In(e~ FrAWIEW]), (B3)
Bv
Ueﬁ:E o et (A2) The one-impurity approximation consists in writing=1)
Yoo,
Comparing both equations yields the values of(tg&), and (He—Ho)k=f dxq ...dxAH(Xq) ... AH(Xy)
consequently that ofE?)==,p,(E?),. Equation(35) fol- (B4a)
lows. We note that ifro= (o) (an exact upper bound for the
effective conductivity, then (AE?)=0. Therefore, o
=(o) defines a trivial model of a medium which is a com- :kalf dy AH(y)k. (B4b)
posite, but from which field fluctations are nonetheless ab-
sent.

The last expression only retains contributions from identical
points in Eq.(B4a). Summing back the series {iB81), and

APPENDIX B: CALCULATIONS IN THE “ONE- using (B3) yields

IMPURITY” APPROXIMATION

The approximation which leads to E@0) is built as

dy
follows. We first expand the exponential (ext = B(He=Ho) Do=1+ f 7<I(y)_ 1), (BS)

jiTD(E“)EXF{—BJ dX{Wo[E(X)]+UAWX[E(X)]5(X—V)}}

y) , (B6)

f D(E*)ex — BHo]

where a one-impurity-type integral is involved. Since theto write the numerator of EqB6), which we denote hereaf-

fundamental size of the theory-(p ') is much smaller than ter by J(y), as

the volumeV=1 of the system, and since the latter is statis-

tically translation invariant, the outer integral oweiis re-

dundant with the disorder average, and can be dropped. We dhdh’

therefore arrive at Eq40). y)= J nd
When g— =, the functionalZ(y) can be computed ex- (2m)

actly. Let us briefly indicate how to do it. We first introduce

the notatiorh for vectors of dimensiomd, and components XJ DE e (ARJAXEX)-M-E+IN-EW) - (Bg)
h{*, with «=1,...n, i=1,...d. Hence, Aw,[E(y)]
EAwy(E(y)). The next step is to use the formal identity

e—iﬁ. ﬁ'e—ﬁvAwy(—i(amﬁ’))

whereM is the matrix defined from the replica-coupling ma-
trix M in wq by IT/Ii”]-‘VE M“?§;; . After an integration over the
dhdi fields E and ¢ implied in the measur®E [which can be
e—iﬁ-ﬁ’e—ﬂquy(_i((glaﬁr))eiﬁ’-ﬁ easily done using the Fourier components¢ofand withy
(27)Md =0 since Eq.(40) is independent of/], 7 reads, up to in-
(B7) essential factorg29]

e BrAwy(E) — f
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dhdh’ - 1
j(y):exp{—(,BIZ)E M’”Eg}f exp(—ih-h") lim (Ho)o/n= 5 5 00ES. (CY
ay (27T)nd n—0
9 As to (He)o, We first expand, [Eq. (13)] in the cumulants
xexg —vBAwy| —i ﬁ C, of the disorder averages of(x), according to their defi-
nition by the generating functionX(is a generic expansion
xexih’-Eq—h'-M~1.h'/(280d)]. (Bg)  variablg
k
Formally expanding expf{vBAw,) in powers of—ialoh’, In{eX?)= 2 KT Cy (o). (C2
and carrying out successive integrations by parts dver k=1
yields We therefore have
Uﬂd njd/2 1 1 BU K
Ay)= Det(l\/l)(g) } Ho=— ] g kzl H[_ > > E“x)%| C(o). (C3)
xexp{ —(BI2)> M’”ES} We deduce that
ay
1 1 (—Bo)* ,
xf dh exd — (v 8d/2)(Ey—R) - M - (Eo—h) H<HE>°__WE k; T CO)G(ET),
(CH
—vBAw,y(h)], (B10) where
where the determinant is evaluated in replica space. Finally,
Z(y) = Ay)! Ay Aw,=0): Cu(E?2)= <{Z E*(x)%/2 > (C5)
nid/2 0
uy)= Del(M)( ) } f H dh® (because of statistical homogeneity, these coefficients do not
depend on the position variab¥@. It is convenient to intro-
d duce the following generating functiog(X) in order to
xXexg —vfB Q% M*Y(Eo—h®)i(Eo—h?); compute the’, :
Z(X)= > (= )kc E2/2
+Aw,[h]} . (B11) ( )_k> (E“2)
For anyAw,, this integral over the replicated vector figid = 1 <exr{ — EXE E“2(x) > -1
can be computed exactly using a saddle-point mefB6¢in n 2 o
the limit B—«, as announced. This allows for a possible 1 1
extension of the theory to nonlinear media in the “one- _* o+ w2
impurity” approximation. Here, for the linear problem at B In<exp{ X2, E*(x) > +O(n). (CH
hand, Eq.(B11) is a simple Gaussian integral. Settidgr 0
=o—0pand SettingA*?= §,,,+ (X/v Bd)[M ~1]*?, we obtain[29]
(1+A—U) (B12) Z(X)= ! dTrLnA+XEZY, [A 1?7} +0O
oo (X)= = 5 | A TILNA+XESS, [A™1]7) +O(n)
C
we obtain (€
By q (the trace and the logarithm act in the replica space
_pU Expanding Eq.(C7) in powers ofX then allows for the
InZy)= AU'U“EOJF (In p= BodopEy/d) n identification

+0(n?), (B13) kKl 1 \kd
Ck(E2/2)—E(—) -

from which follows Eq.(42). pd

APPENDIX C: CALCULATION IN THE “CUMULANT

1
X ETr(l\/rk)+v/3o|E(2,2 [M1=K]2Y| +O(n).
SERIES” APPROXIMATION “

(C8)
We have to computéH,)g and (Hg)o in Eq. (54). The

calculation of(Hg), is easy with the methods already em- Use of this expression in E4C4) cancels the convergence
ployed, and yields factor k!: we reintroduce it by inserting the identity
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1 ©
—J due um=1, (C9
m! Jo

applied tom=k—1 andm=Kk in the resulting cumulant se-

ries. This permits its Borel summation, which brings in thear

functionsh,(x) defined by Eq(C11). This results in

1 1
H<He>02 “n

d
SE32 [Mho(M~*/d)]*
ay

N 1
2vp

where we defined the family of functions

Trh_y(M~Yd)|[+0O(n), (C10

2= [

Note for further use that

duume YIn(e™"% (m>-2). (C1)

YVES-PATRICK PELLEGRINI AND MARC BARTHELEMY
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1
hm(2)= ~[hm+1(2) = (k+ D)hn(2)]. (C12

For M given by Eq.(29), the different terms in Eq.C10
e

lim %2 [Mho(M~Y/d)]47= aghg(Li(do)),

n—0 ay

1
lim ~Tr h_y(M~Yd)=dh_4(1(da))

n—0
+vBdogqhy(1A(dag))EZ,
(C13

which leads to Eq(55).
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