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Self-consistent effective-medium approximations with path integrals
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We study effective-medium approximations for linear composite media by means of a path integral formal-
ism with replicas. We show how to recover the Bruggeman and Hori-Yonezawa effective-medium formulas.
Using a replica-coupling ansatz, these formulas are extended into ones which have the same percolation
thresholds as those of the Bethe lattice and Potts model of percolation, and critical exponentss50 andt52 in
any space dimensiond>2. Like the Bruggeman and Hori-Yonezawa formulas, the obtained formulas are exact
to second order in the weak-contrast and dilute limits. The dimensional range of validity of the four effective-
medium formulas is discussed, and it is argued that out formulas are of better relevance than the classical ones
in dimensionsd53,4 for systems obeying the nodes-links-blobs picture, such as random-resistor networks.

PACS number~s!: 05.10.2a, 05.40.2a, 05.50.1q, 87.18.Sn
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I. INTRODUCTION

Among various effective-medium formulas used to mo
the effective behavior of random conducting linear comp
ites, the symmetrical Bruggeman formula@1,2# is undoubt-
edly the most popular. Applied to an insulator-conductor
nary mixture, it predicts a percolationlike transition@3–6# for
a volumic fraction of conductorpc51/d, where d is the
space dimension. The critical exponents ares5t51, and its
critical properties are thoroughly discussed in Ref.@4#. This
formula can be interpreted in two ways. On the one ha
Milton has shown@7# that it yields the exact effective con
ductivity of an ad hoc ideal medium built with a particula
hierarchical structure. On the other hand, the Bruggeman
mula can be seen as a first~one-body! self-consistent ap-
proximation to general disordered symmetric cell mater
@8#, to which systematic corrections could be worked o
However, the Bruggeman approximation is very differe
from a mean-field theory of random conducting media.
deed, an exact mean-field calculation on the Bethe lat
@9,10# predicts a percolation thresholdpc;1/(2d) and expo-
nentss50 andt53. These exponents are exact ford>6, as
well as the asymptotic behavior of the threshold whend
→` ~at least, for the hypercubic lattice@5# to which a con-
tinuum theory naturally compares@11#!. These values are
also obtained in a more systematic mean-field theory for r
dom resistor networks@12#.

The remarkable discrepancy between the mean-field
sults and Bruggeman’s formula indicates the ambiguous
tus of the Bruggeman theory. In fact, in spite of vario
~mostly perturbative! investigations@13–15# in order to de-
termine precisely its theoretical status, the reasons for
peculiar critical behavior of Bruggeman’s formula have n
been completely cleared up. More surprisingly, another s
consistent effective-medium approximation@13,16# due to
Hori and Yonezawa~HY!, obtained for the same type o
media by means of a completely different approximat
scheme~and later derived by functional methods@17#!, ex-
hibits the same exponentss5t51 and a similar threshold
behaviorpc512exp(21/d);1/d.

Apart from phenomenological variants, and to our know
PRE 611063-651X/2000/61~4!/3547~12!/$15.00
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edge, the Bruggeman and HY effective-medium formulas
the only ones obtained from the equations of electrostatic
continuous media which are able to describe, at least qu
tatively, the overall features of a percolation transition in a
dimension. One intriguing question concerns the possibi
of deriving alternative effective-medium formulas from
continuum formulation, which do not lead to the seeming
unavoidable valuess5t51 andpc;1/d. As we show in this
paper, such a possibility exists. Our starting point is the p
integral approach recently put forward by Barthe´lémy and
Orland@18#, where the effective-medium problem is recast
a functional form. The problem reduces to compute a fr
energy: roughly, the logarithm, averaged over the disord
of a functional integral of Boltzmann-like weights, over a
lowed field configurations~which include boundary condi
tions!. The average of the logarithm is carried out with t
replica method~already used in Ref.@12#!. In Ref. @18#, the
authors showed that the path integral formulation allows o
to easily recover the second-order weak-disorder expan
of the effective permittivity of nonlinear composites@19#.

However, this formulation has not yet been used to der
self-consistent estimates. In this paper, we show how this
be done. After a presentation of the functional approach
the homogenization problem, and of the replica method~Sec.
II !, we discuss self-consistent effective-medium approxim
tions ~Sec. III!. As usual in such approximations, a bac
ground reference medium is introduced under the form of
ansatz for the energy of the system, whose parameters a
be determined self-consistently~Sec. III A!. The unusual fea-
ture here is that the ansatz contains a replica-coupling te
whose significance is explained~Sec. III B!. The self-
consistency conditions to determine its parameters are
cussed next, and two types of effective-medium formulas
identified~Sec. III C!: one in which the replica couplings ar
cancelled~hereafter referred to as ‘‘type 1’’!, and the other
one with nonzero replica couplings~‘‘type 2’’ !. Two differ-
ent approximations are then worked out for each type~Sec.
IV !. It is found that type 1 generates the Bruggeman and
formulas, whereas type 2 brings in two new effectiv
medium formulas which are ‘‘replica-coupling counterpart
of the previous ones. They possess exponentss50, t52,
3547 © 2000 The American Physical Society
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3548 PRE 61YVES-PATRICK PELLEGRINI AND MARC BARTHÉLÉMY
and a thresholdpc;1/(2d) ~Sec. IV B 3!. These formulas
are discussed in Sec. V, where numerical results are
sented before we conclude in Sec. VI.

II. PATH INTEGRAL FORMULATION
OF THE PROBLEM

The effective properties of a random conducting medi
can be defined with the help of the total dissipated powe
the medium@20–22#. In terms of the electric fieldE(x), the
dissipated powerw in the system of volumeV reads

W@E#5E
V
dx wx„E~x!…, ~1!

wherewx is the local power density.
Hereafter, we take the volume V of the sample equal t.

In heterogeneous materials,wx depends on constitutive pa
rameters randomly varying from point to point. For line
conducting media withj (x)5s(x)E(x), wheres is the lo-
cal random conductivity andj is the electric current, we hav

wx„E~x!…5s~x!E2~x!/2. ~2!

In the analogous effective permittivity problem the dis
pated power is replaced by the stored energy«(x)E2(x)/2 («
is the permittivity!. For this reason, we shall refer towx as
the ‘‘energy density’’ hereafter. In the nonlinear proble
wx(E) is a nonquadratic function ofE.

An alternative to solving Maxwell’s equations is to min
mize the total energyW subjected to the two constrain
@20,21#: ~i! E52¹f and~ii ! Ē5E0; here, the bar stands fo
a spatial average, andE0 is a constant applied electric field
The minimum,W* (E0), is expected to be self-averaging,
it occurs for the free energy in disordered systems. We
therefore write

W* ~E0!5K min
Ē5E0

E52¹f

W@E#L ~3!

where the bracketŝ•& denote the disorder average.W* (E0)
is the energy in a homogeneous medium characterized b
effective constitutive law@20#

^ j &5
]W* ~E0!

]E0
5seffE0 . ~4!

The second equality defines the effective conductivity of
medium.

The problem thus reduces to computing the average of
constrained minimum of a functional of the electric fiel
The electric field derives from a potential and has a fix
mean value. We can rewrite the constrained minimum in
~3! using a path integral

min
Ē5E0

E52¹f

W@E#52 lim
b→`

1

b
ln E DE Df d~E1¹f!

3d~Ē2E0!e2bW[E] . ~5!
e-

n

1

,

n

an

e

e

d
.

The minimum can be interpreted as the ground state en
associated to the partition function

Z5E D̃E e2bW[E] , ~6!

where we have used the shorthand notation

D̃E5DE d~Ē2E0!E Df d~E1¹f! ~7!

for the constrained functional measure. We need to comp
the average of the logarithm of Eq.~6!. In order to proceed,
we introduce replicas@23,24# and use the identitŷ ln Z&
5limn→0(^Zn&21)/n, hence

W* 52 lim
b→`

lim
n→0

1

nb
~^Zn&21!. ~8!

The limits do not commute. The equivalent form

W* 52 lim
b→`

lim
n→0

1

nb
ln ^Zn& ~9!

can be used as well. The replica method relies on the
that one can easily compute the replicated partition funct
^Zn& for n integer, and subsequently take the limitn→0.
The main quantity of interest therefore is

^Zn&5E )
a51

n

D̃EaK e2b(
a51

n

W[Ea] L . ~10!

Denoting the replicated measure byD̃(Ea)5)a51
n D̃Ea, the

averagê Zn& can be written in terms of an ‘‘effective Hamil
tonian’’

^Zn&5E D̃~Ea!e2bHe, ~11!

with

He52
1

b
lnK expS 2b (

a51

n

W@Ea# D L . ~12!

For simplicity, we restrict ourselves to cell materia
where the local properties are statistically uncorrelated fr
site to site. Volume integrals may then be identified w
sums over sites~each pertaining to one cell! according to the
correspondence*dx↔v(x , wherev is an infinitesimal cell
volume~which defines the microscopic correlation length
the problem!. ThenHe simplifies to

He52
1

bE dx

v
lnK expF2bv(

a
wx„E

a~x!…G L . ~13!

Note that our discussion in Sec. III will be specialized
binary disorder for which the constitutive parameters c
take only two values~but the proofs are general!. That is, we
assume that the local energy density is distributed accord
to the probability distribution
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P„w5wx~E!…5pd„w2w1~E!…1qd„w2w2~E!…,
~14!

~whereq512p). With this choice,

He52
1

bE dx

v
lnH p expF2bv (

a51

n

w1„E
a~x!…G

1q expF2bv (
a51

n

w2„E
a~x!…G J . ~15!

The above formalism applies to any form of the energy d
sity, and in particular to nonlinear media@25–28#. A method
for extracting from the path integral the second-order we
contrast perturbation expansion of the effective poten
W* (E0), for nonlinear media, has been introduced in R
@18#.

III. PRINCIPLE OF SELF-CONSISTENT
APPROXIMATIONS

In this paper, we consider the linear problem only. T
section is devoted to self-consistent approximations toW* .
We first present the principle for building such approxim
tions through the introduction of a trial Hamiltonian. The
we discuss the choice of a trial Hamiltonian with repli
couplings. Finally, we explain how to exploit these repli
couplings in order to obtain two kinds of self-consistent fo
mulas.

A. Overview

The common ingredient to the approximations discus
below is the introduction of a linear comparison mediu
described by a trial HamiltonianH0 which is quadratic in the
electric field and nonrandom, e.g., the one-parameter an

H05
s0

2 E dx(
a

Ea2~x!, ~16!

where s0.0 is to be determined by an appropriate se
consistency condition. This Hamiltonian is that of a~repli-
cated! homogeneous medium, but without couplings betwe
replicas. Its meaning and that of other possible choices w
replica couplings are discussed below.

The partition function̂ Zn& can be rewritten as

^Zn&5

E D̃~Ea!e2b(He2H0)e2bH0

E D̃~Ea!e2bH0

E D̃~Ea!e2bH0,

~17!

or, with another notation

^Zn&5^e2b(He2H0)&0Z0 , ~18!

where Z0 is the partition function associated toH0, and
^•&0 stands for the functional average with weigh
e2bH0/Z0. Equation~9! thus reads

W* 5W01DW, ~19!
-

-
l
.

-

-

d

tz

-

n
th

where

W0~E0!52 lim
n→0
b→`

1

nb
ln Z0 , ~20!

DW~E0!52 lim
n→0
b→`

1

nb
ln^e2b(He2H0)&0 . ~21!

The quantity DW(E0) is difficult to compute ~an exact
evaluation would lead to the exact result for the effect
conductivity!, and we have to resort to approximations.

A natural self-consistency condition forH0 is

DW~E0!50, ~22!

which completely determinesH0 in the case where it de
pends on one single parameter, as in Eq.~16!. For more
general choices ofH0 with several free parameters, Eq.~22!
only provides a relation between these parameters, and a
tional considerations are in order to determine them all. Fi
we have to determine precisely the form of the ansatz to
used in our calculations.

B. Replica couplings and choice of the ansatz

We deduce here the form of the trial HamiltonianH0
from an analysis of the effective HamiltonianHe . Eq. ~12!
shows that the effective Hamiltonian is nonrandom but t
the average over disorder introduced a coupling between
ferent replicas. The meaning of these couplings is m
transparent if we carry out an expansion of Eq.~12! around
the average fieldĒ5E0 as in the weak-contrast expansio
@18#. With ] i5]/]Ei andDEa5Ea2E0 we have

He5n^wx~E0!&1
1

2 F(
a

E dx ai j DEi
a~x!DEj

a~x!

2b(
a,g

E dx dy ci j
(2)~x2y!DEi

a~x!DEj
g~y!G1•••,

~23!

where

ai j 5^] i j
2 wx~E0!&, ~24!

ci j
(2)~x2y!5^] iwx~E0!] jwy~E0!&2^] iwx~E0!&^] jwy~E0!&.

~25!

The first nonzero replica-coupling term is proportional
bc(2). We thus see that the coupling between replicas a
only within clusters defined byn-point connected correlation
functionsc(n), and accounts for the fluctuations of the ele
tric field in these clusters. The replica coupling would van
if there were no disorder at all. In the limit where the size
the region defined byc(2) shrinks to zero—which means tha
the system is observed at a macroscopic level, we can
proximate

ci j
(2)~x2y!.vci j

(2)~0!d~x2y!, ~26!

and we recover the expansion
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He5n^wx~E0!&1
1

2E dx F(
a

ai j DEi
a~x!DEj

a~x!

2vb(
a,g

ci j
(2)~0!DEi

a~x!DEj
g~x!G1•••, ~27!

which could directly be obtained from Eq.~13!. The pres-
ence ofv in front of the replica coupling term is the macro
scopic remnant of a microscopic average having been ta
within a two-particle cluster, of centerx and volumev. This
discussion therefore enlightens a relation between rep
coupling and the electric field fluctuations within clusters

Expansion ~27! suggests a two-parameter replic
symmetric ansatz of the form

H05
1

2 (
ag

E dx MagEi
aEi

g , ~28!

where

Mag5s0dag2vbQE0
2 . ~29!

The free parameters ares0 and Q. Note thatQ has the di-
mension of a squared conductivity, because it is related
quantity relative to two points. For simplicity, the ansatzM
is diagonal in the Euclidean vector space. However, we t
calculations with a tensorial structure reproducing that ofai j

and ci j
(2) in Eqs. ~24! and ~25!; but, apart from a different

normalization forQ, no differences showed up in the fin
effective-medium theories~as far as linear media are con
cerned!.

An interesting feature of the ansatz~29! is that, though
being nonrandom, it embodies underlying disorder throu
its replica couplings. In order to understand this point,
computeW0(E0) given by Eq.~20!

W0~E0!52 lim
n→0
b→`

1

nb
ln E D̃E expF2

b

2E dx

3S s0(
a

Ea22vbQE0
2(

a,g
Ea

•EgD G . ~30!

After writing E5E02¹f, and going to the Fourier trans
form of f @29#, we arrive at

W0~E0!52 lim
n→0
b→`

1

nb
lnF ~DetM !21/2v

3expS 2
b

2 (
ag

MagE0
2D G

5
1

2
s0~12Q/s0

2!E0
2 . ~31!

Carrying out the derivative of Eq.~30! with respect tos0,
we obtain

lim
n→0
b→`

1

n K (
a

^Ea2&L
0

5E0
21

Q

s0
2

E0
2 , ~32!
en

a

a

d

h
e

where volume averagesE2̄ have been replaced by statistic
ones, the microscopic sizev1/d being much smaller than tha
of the system,V1/d51. All the replicas are equivalent, an
the functional averagê•&0 selects in the limitb→` the real
field in the medium. Hence, settingDE5E2E0, the previ-
ous equation leads to

^DE2&

E0
2

5
Q

s0
2

, ~33!

which implies thatQ>0. When Q5” 0, the electric field
fluctuates in the medium, whereas it is uniform whenQ
50. The ansatzH0 therefore represents a medium which
homogenized~because it is nonrandom!, but which nonethe-
less accounts for field fluctuations. We thus expect unus
effective medium approximations when the replica coupl
Q is nonzero.

C. Self-consistency

Up to this point the discussion focused on the ansatz
self, without referring toHe . In particular,s0 was treated as
a mere number. We now discuss what happens when
consistency is imposed, within some approximation sche
The medium is made ofN phases labeled byn, of respective
conductivitiessn , and volume concentrationspn . The self-
consistency relationDW(E0)50, which imposes constraint
on the ansatz, determinesQ as a functionQ5Q(s0 ,$sn%).
ThenW* 5W0 and, with Eq.~4!,

seff5s0F12
Q~s0 ,$sn%!

s0
2 G . ~34!

Suppose now thats05s0($sn%) is determined by an ad
ditional condition~to be found precisely below!. Using the
exact formula@30# ~cf. Appendix A!

^DE2&

E0
2

5(
n

]seff

]sn
21, ~35!

the fluctuations of the electric field deduced from Eq.~34!
can be written

^DE2&

E0
2

5seff8 ~s0!S (
n

]s0

]sn
21D

1
Q

s0
2

2
1

s0 F ]Q

]s0
1(

n
S ]Q

]sn
D

s0

G , ~36!

where the last derivative is performed at constants0. This
expression distinguishes between different contributions
the field fluctuations:~i! the first term represents fluctuation
coming from the ‘‘macroscopic’’ background effective m
dium s0; ~ii ! the second one is that already found in E
~33!, and would be the only one ifQ were independent from
s0, and if s0 were equal tô s&, the trivial value corre-
sponding to a nonfluctuating reference medium for a mu
phase composite, cf. Appendix A;~iii ! and finally a third
term comes from the dependence ofQ on s0 andsn . Both
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last terms are, according to the interpretation of replica c
pling developed in the previous section, of ‘‘microscopic
origin.

We now turn to the determination ofs0($sn%). A first
obvious self-consistency condition fors0 is Q[0, so that
seff5s0. The effective-medium formulas obtained this w
are referred to as ‘‘type 1’’ hereafter. As shown below,
this type pertain the Bruggeman and HY formulas.

‘‘Type 2’’ effective-medium formulas are obtained b
taking s0 as the solution ofseff8 (s0)50, and by using this
value in seff . According to Eq.~36!, this procedure make
the effective-medium insensitive to the fluctuations gen
ated in the reference mediums0, so that relevant fluctua
tions only come fromQ.

IV. TWO APPROXIMATIONS

In this section, the ideas introduced above are used wi
two different approximations toDW(E0), based on the an
satz ~28!, ~29!. For each approximation toDW, ‘‘type 1’’
and ‘‘type 2’’ formulas are obtained. Herafter,q5Q/s0

2, so
that

seff5s0~12q!. ~37!

A. One-impurity approximation

We first consider a ‘‘one-impurity’’~or ‘‘local’’ ! calcula-
tion. The Bruggeman formula emerges as the ‘‘type
effective-medium formula in this approximation, which
not suprising since it can be seen as a one-site~self-
consistent! theory @13,15#.

1. Approximation scheme

The approximation forDW(E0) @Eq. ~21!#, detailed in
Appendix B, is a one-impurity approximation where intera
tions between different points are ignored. Let us denote
w0 the trial Hamiltonian density, which depends on all t
replicas, defined from Eqs.~28!, ~29! by

H0[E dx w0@E~x!#. ~38!

Here and in Appendix B, the notation@•# indicates a depen
dence with respect to all the replicas. Setting

Dwx@E~x!#5(
a

wx„E
a~x!…2w0@E~x!#, ~39!

the one-impurity approximation results in

^e2b(He2H0)&0.11
1

v
^^e2bvDwx[E(x)]&021&. ~40!

Because of statistical translation invariance, the final resu
independant of the pointx. The right-hand side can be com
puted exactly for any potentialwx in the limit b→` using a
saddle-point method. SettingDs5s2s0 and

m5S 11
Ds

ds0
D 21

, ~41!
-

r-

in

’

-
y

is

we arrive at

DW~E0!5
1

2
^Dsm&E0

21
q

2
^sm&E0

2 . ~42!

The conditionDW(E0)50 yields

q52
^Dsm&

^sm&
. ~43!

2. Type 1 formula: Bruggeman’s

Letting q[0 amounts to imposinĝDsm&50, which is
nothing but the Bruggeman equation

K s2s0

s1~d21!s0
L 50. ~44!

The Bruggeman equation can also be written^m&51, or
s05^sm& if d5” 1, ors05^sm&/^m&. The last expression is
suitable for computings0 iteratively ~starting, e.g., from
s05^s&) in any dimension. The Bruggeman conductivi
seff5s0 possesses a percolation thresholdpc51/d, and
critical exponentss5t51 @4#.

The fluctuations computed from Eq.~35! read

^DE2&

E0
2

5
s0^m

2&

^sm2&
. ~45!

3. Type 2 formula

We now let qÞ0 and given by Eq.~43! and seff(s0)
5s0„12q(s0)…. The equationseff8 (s0)50 reads

s05
^sm&

^m& S 11
^m&^s2m2&2^sm2&^sm&

2d^sm&2 D . ~46!

Like Bruggeman’s, this equation is easily solved by ite
tions starting froms05^s&. The iterations then always con
verge to the physical solution, which we denote bys0* . The
effective conductivity thus isseff5s0* „12q(s0* )…. To study
its critical behavior, we consider a binary mixture, wheres
5s1 with probability (12p), ands5s2 with probabilityp.
In the conductor-superconductor limit wheres2→` we find,
settingpc51/(2d21),

s0* 5
s1

p~d21!
SA 12p

12p/pc
21D ~p,pc! ~47!

and

seff52s1

@12dp2A~12p!~12p/pc!#

p2~d21!2
~p,pc!.

~48!

The critical concentrationpc can be interpreted as a percol
tion threshold, and is the same as that obtained in the m
field model on a Bethe lattice@12# with connectivity z
52d. Since seff52(2d21)s1 /(d21);(pc2p)0 for p
&pc , the superconductivity exponent iss50. Note, how-
ever, thats0 displays a square-root cusp atp5pc . The criti-
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cal behavior for p.pc is obtained by examining the
insulator-conductor mixture wheres2 is finite ands150.
Then

s0* 5s2

p/pc21

2~d21!
, ~49!

seff5s2

~p/pc21!2

4~d21!2p
~p.pc!. ~50!

Sinceseff;(p2pc)
2 for p*pc , the conductivity exponen

is t52.
For the special case ofd51, m5s0 /s so that Eq.~46!

reduces to s05^1/s&21, and q50. Therefore, seff
5^1/s&21, which is the exact result. Like Bruggeman’s, th
formula is also exact to second order in the contrast, in
dimension

seff5^s&F12
^s2&2^s&2

d^s&2
1•••G ; ~51!

and in the dilute limit where~e.g.! p2!1

seff5s1F11d
s22s1

s21~d21!s1
1•••G . ~52!

In the discussion~Sec. V!, it is argued that because of it
exponentss5” t, and because it is less trivial than the Brugg
man formula ~especially in the insulator/conductor ca
where it does not reduce to a straight line!, this formula may
constitute an easy-to-handle alternative to the latter in
mensionsd>3. Graphical comparisons between differe
effective-medium formulas are discussed in Sec. V.

B. Cumulant series approximation

In this section, we show how to recover by means o
cumulant approximation toDW the effective-medium for-
mula of HY, together with its ‘‘type 2’’ counterpart.

1. Approximation scheme

We consider the first-order cumulant approximation

^e2b(He2H0)&0.e2b^He2H0&0. ~53!

We have then

DW~E0!. lim
n→0
b→`

1

n
^He2H0&0 . ~54!

As shown in Appendix C, the calculations here involve
expansion in a series of the cumulants of the distribution
s, whose significance has been discussed at length in
original paper by HY@16#. After some algebra, we obtai
~cf. Appendix C!

DW~E0!52
s0

2
$@11dh0„1/~ds0!…#1dq h0„1/~ds0!…%E0

2 ,

~55!

where
y

-

i-
t

a

f
he

h0~z!5E
0

`

du e2u ln^e2usz&. ~56!

The family of functionshk is defined in Appendix C. The
self-consistencyDW(E0)50 now yields

q52F11
1

dh0„1/~ds0!…G . ~57!

2. Type 1 formula: The Hori-Yonezawa formula

We first consider the case with no couplings between r
licas, i.e.,q50. The HY formula fors0 reads

h0„1/~ds0!…52
1

d
, ~58!

and the effective conductivity isseff5s0. It can be shown
that seff displays a percolation thresholdpc51
2exp(21/d), and exponentss5t51 @16#. Applying Eq.
~35! and using Eq.~C12!, the fluctuations read

^DE2&

E0
2

52
21dh1„1/~ds0!…

11dh1„1/~ds0!…
. ~59!

3. Type 2 formula

We now considerqÞ0 and determined as a function o
s0 by Eq. ~57!. Then

seff~s0!5s0F21
1

dh0„1/~ds0!…G . ~60!

The equation fors0 is seff8 (s0)50; that is, with Eq.~C12!

21
1

d

h1„1/~ds0!…

h0
2
„1/~ds0!…

50. ~61!

In order to study the critical behavior ofseff , we consider
again a binary mixture wheres5s1 with probability (1
2p), and s5s2 with probability p. In the conductor-
superconductor case wheres2→`, we haveh0„1/(ds0)…
5 ln(12p)2s1 /(ds0) and a similar equation forh1, so that
Eq. ~61! reduces to a second-degree polynomial equation
physical solution reads

s0* 5
2s1

A112d ln~12p!@11A112d ln~12p!#
. ~62!

It is defined forp less than a critical value

pc512e21/(2d). ~63!

This percolation threshold is the same as the one obtaine
the Potts model at the mean-field level, and in the mean-fi
theory of Ref.@12#. Reporting Eq.~62! into Eq. ~60!, we
arrive at

seff5
4s1

@11A112d ln~12p!#2
~p,pc!. ~64!
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Sinceseff}(pc2p)0 for p&pc , the superconductivity expo
nent iss50.

In the opposite insulator-conductor case, wheres150
and s2 is finite, the solution forp.pc can only be found
perturbatively around the percolation threshold. Expand
the logarithm inh0 andh1 as

ln@~12p!1pe2us2 /(ds0)#

5 ln~12p!1(
l>1

~21! l 21

l S p

12pD l

e2 lus2 /(ds0), ~65!

and defining

A~x!5(
l>1

~21! l 21

l 2
xl5E

0

xdt

t
ln~11t !, ~66!

we find that

s0* 5
s2

4d2A„pc /~12pc!…
~p2pc!1O„~p2pc!

2
…, ~67!

and that

seff5
s2

4d2A„pc /~12pc!…
~p2pc!

21O„~p2pc!
3
…

~p*pc!, ~68!

where the conductivity exponent ist52. Hence, as in the
previous ‘‘one-impurity’’ approximation, the replica
coupling ansatz yields critical exponentss50,t52, and an
asymptotic dependence of the thresholdpc;1/(2d) when
2d@1. One can easily check that this ‘‘type 2’’ effective
medium formula is exact to second order in the we
contrast limit and in the dilute limit.

After a few manipulations, we now obtain with Eqs.~35!
and ~57!

^DE2&

^E&2 52qS 11
q

2D . ~69!

V. DISCUSSION

We plot in Fig. 1 ~respectively, Fig. 2! the ‘‘type 2’’
scaled conductivitiesseff /s1 versusp, the volume fraction
of material 2, for a dielectric ratios2 /s1510 ~respectively,
s2 /s151000). We also show the Hashin-Shtrikman~HS!
bounds@31#, the Hori-Yonezawa formula which comes fro
a cumulant series~CS! approximation, and the one-impurit
~OI! Bruggeman formula. The dimension isd52. Figs. 3
and 4 display similar plots ford53.

For moderate contrast~Figs. 1 and 3!, we observe that al
four self-consistent formulas lie close to each other. This
consequence of the fact that they are exact to second ord
the contrast. Also, for any contrast, the slopes atp50 and
p51 are all identical, which is a consequence of the fact t
they are exact to second order in the dilute limitp→0 ~the
expression nearp51 is obtained by replacingp by p21 and
by interchangings1 ands2). We also observe that the H
bounds are satisfied in each case considered. However
formulas obtained via the cumulant series summation,
g

-

a
r in

t

the
.,

both the HY formula and its type 2 counterpart, do not
duce to the exact resultseff5^1/s&21 in dimension 1~not
shown!. This exact result is also the common value of the H
bounds ford51. Hence, formulas derived from the cum
lant series approximation do not obey the HS bounds in
mensiond51. On the other hand, both the Bruggeman fo
mula and its type 2 counterpart do reduce to the exact re
whend51, and can be seen to always obey the HS bou
whatever d is. The one-impurity approximation schem
therefore appears to be of better physical relevance for
dimensions than the cumulant series approximation.

We now discuss the critical behavior. First of all, the pe
colation thresholds found in the type 2 formulas arepc51

FIG. 1. Rescaled effective conductivities in dimensiond52 for
a binary medium, versus the volume concentationp of component
2. The conductivity ratio iss2 /s1510. Highest and lowest solid
curves: Hashin-Shtrikman bounds; Br.: the Bruggeman form
~‘‘type 1,’’ one-impurity approximation—OI!; HY: the Hori-
Yonezawa formula~‘‘type 1,’’ cumulant series approximation—
CS!; both ‘‘type 2’’ curves are the unique formulas, within OI an
CS approximations.

FIG. 2. Rescaled effective conductivities in dimensiond52 for
a binary medium, versus the volume concentationp of component
2. The conductivity ratio iss2 /s151000. Same plots as in Fig. 1
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2exp@21/(2d)# ~cumulant series! and pc51/(2d21) ~one
impurity!. These thresholds are the percolation threshold
the Potts model, and that of the Bethe lattice model, resp
tively. Both thresholds decrease as 1/(2d) when d→`,
which is the exact asymptotic. The Bethe and Potts mod
are mean-field models, where emphasis is put on fluctuat
in the couplings between a given site and its neighbors.
the contrary, in effective-medium theories, interactions
tween impurities are taken into account through the s
consistent background medium. Such interactions are m
important for low dimensions. Effective-medium theori
therefore overestimate interactions in high dimensio
whereas mean-field models are expected to underesti
them in low dimensions. Above the upper critical dimensi
where mean-field models are accurate, interactions betw
impurities become irrelevant. According to this discussi
our type 2 formulas appear as hybrids between mean-
and usual effective-medium theories, and are expected t
mostly relevant in dimensions intermediate betweend51

FIG. 3. Rescaled effective conductivities in dimensiond53 for
a binary medium, versus the volume concentationp of component
2. The conductivity ratio iss2 /s1510. Same plots as in Fig. 1.

FIG. 4. Rescaled effective conductivities in dimensiond53 for
a binary medium, versus the volume concentationp of component
2.The conductivity ratio iss2 /s151000. Same plots as in Fig. 1
of
c-

ls
ns
n
-
f-
re

s,
ate

en
,
ld
be

and the upper critical dimensiond56. Indeed, the condition
seff8 (s0)50 minimizes the influence of the background m
dium and, according to the interpretation developed in S
III B, replica coupling has to do with couplings betwee
neighboring points. The reason for which the introduction
a replica-coupling ansatz yields the exact thresholds
mean-field theories will have to be clarified in the future.
Fig. 5, we plot the quadratic fluctuations^DE2&/^E&2 as a
function of p. The fluctuations in the type 2 estimates a
greatly reduced compared to those of the Bruggeman
HY formula. This is consistent with the fact that the influ
ence of the background is reduced.

Type 1 formulas give exponentss5t51, while for type 2
formulas they ares50, t52. Mean-field theories yields
50, t53 which are the exact values ford>6. It is interest-
ing to compare these values to exact bounds deduced
the nodes-links-blobs~NLB! model, in all dimensions. The
NLB model is currently accepted as a good one for the ba
bone structure of real random resistor networks@5#. The
bounds read

t>11~d22!n, ~70a!

s>11~22d!n, ~70b!

where n.0 is the correlation length exponent:j
}up2pcu2n. They hold for 2<d<6, whereas ford.6 the
right-hand sides in Eq.~70! are fixed to theird56 values.
These bounds follow, e.g., from comparing the lower a
upper exact bounds obtained in Ref.@32# for the noise expo-
nent k in weakly nonlinear networks, within the NLB
scheme. They are satisfied by simulation results@32#. Using
the usual effective-medium valuess5t51 in Eq. ~70! im-
plies the absurd valuen50, save ford52 where a finite
value ofn is allowed. Though information about the corr
lation lengthj ~and therefore aboutn) is not included in the
Bruggeman nor in the HY formulas, the above bounds sh
that, as long as they are meant to model percolating syst
obeying the NLB picture, these formulas are truly adequ
only in dimensiond52 – andd51 where the Bruggeman
formula is exact. As to type 2 formulas, we insert the valu

FIG. 5. Relative quadratic fluctuations of the field in dimensi
d53 for a binary medium, versus the volume concentationp of
component 2. The conductivities ares151, s251000.
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s50, t52 into Eq. ~70! and deduce thatn51/(d22), a
reasonable expression ford>3 only. If we furthermore insist
on havingn>1/2 as in real systems, these heuristic arg
ments restrict the range of validity of the new formulas
d53,4. Note, moreover, that only in dimensiond52 are the
exponents equal:s5t, because of self-duality@33#. A for-
mula with unequal exponents therefore is expected to be
sentially relevant to dimensions>3.

We also quote theoretical bounds fort due to Golden,
valid for hierarchical NLB models: 1<t<2 for d52,3 and
2<t<3 for d>4 @34#. The above analysis is consistent wi
these bounds, and can be summarized as a set of pres
tions for using the ‘‘best’’ available effective medium the
ries, as far as a nonconflicting critical behavior is concern
for d51, Bruggeman’s formula, or its type 2 counterpart a
exact; for d52, the Bruggeman or HY formulas are a
equate; ford53,4, type 2 formulas are applicable; finall
for d>5 mean-field theories would be the most releva
Estimates or exact values for the exponents are@5# (n,s,t)
5(4/3,1.3,1.3)d52 , (0.88,0.73,2.00)d53 , (0.68,0.4,2.4)d54 ,
(0.57,0.1,2.7)d55 , (1/2,0,3)d>6. These values support ou
prescriptions.

An interesting observation is that actually both type 1 a
type 2 formulas can be given by a variational formulation

seff
type 15 min

s0>0
0<q(s0)<1

seff~s0!, ~71!

seff
type 25 max

s0>0
0<q(s0)<1

seff~s0!, ~72!

provided that an unphysical solutionseff50 is discarded in
the minimization~71!. Indeed, at least in the framework o
the two different models introduced in Sec. IV, the curv
for q(s0) andseff(s0) are found to have the form shown i
Fig. 6. The infimum~71! occurs atq50, whereas the solu
tion s0* to the equationseff8 (s0)50 corresponds to a maxi

FIG. 6. Rescaled effective conductivityseff(s0)/s1, and re-
duced replica coupling parameterq(s0) vs s0 in dimensiond53
for a binary medium. In this exemple computed from Eqs.~37!,
~43!, the conductivity ratio iss2 /s15100, and the volume fraction
p of component 2 isp50.18. The ‘‘type 1’’ effective conductivity
is obtained whenq50, whereas the ‘‘type 2’’ effective conductiv
ity corresponds to the maximum of the curveseff(s0).
-

s-

rip-

d:

t.

d
s

s

mum of seff . Both types of theories can therefore be inte
preted as extremal theories in the framework of se
consistent models built on the replica-coupling ansatz. T
physical meaning of this interpretation is still not clea
However, type 2 formulas should not be disregarded as
physical because of their showing up as maximal ones:
minimization principle states that the dissipated power
minimized with respect to the electric field; but there is
reason why an extremization with respect to arbitrary va
tional parameters should not lead to a maximum of the d
sipated power. Equations~71!, ~72! explain why for a given
approximation, one always hasseff

type 1<seff
type 2 in Figs. 1–4.

We now consider some points that were not explici
treated in the paper. First, we presented the formalism
terms of the electric fieldE, from which we obtained a con
ductivity seff . The electric currentj ~or the inductionD),
could be used instead Ref.@18#. In such a formulation, the
random constitutive parameter is the resistivityr(x)

51/s(x) and the constraints are¹• j 50 and j̄ 5 j 0. One
then computes an effective resistivityreff . Both formulations
are equivalent, but a given approximation scheme in gen

leads to different results forseff and s̃eff51/reff . Prelimi-
nary investigations of type 2 formulas have been led in t
case. These will be presented elsewhere. Finally, we dis
the natural question about the possibility of replic
symmetry breaking@35#. Replica symmetry breaking intro
duces more free parameters in the ansatz, and the fina
tremization has to be carried out with respect to seve
variables. There is no frustration in this problem, and
therefore expect the replica-symmetric solution to be
only one. In order to test this, we tried a one-step symme
breaking solution and did indeed not find any new solutio

VI. CONCLUSION

We presented a functional approach to the calculation
effective-medium properties of random media. We show
how to recover the Bruggeman and Hori-Yonezawa formu
by using specific approximation schemes to the basic fu
tional integral. We also discussed the introduction of
replica-coupling parameter in a Gaussian ansatz, from wh
different effective-medium formulas were obtained. The
formulas appear to be more adequate ind53 compared to
the standard ones by Bruggeman and HY. Because it yiel
sensible result in all dimensions, and fulfills all the co
straints required to deserve the label of a ‘‘good’’ effectiv
medium theory, the type 2 counterpart of the Bruggem
formula offers an interesting alternative to the latter. Inde
it has a percolation threshold equal topc51/5 in three di-
mensions. This is closer to values observed in real mater
compared to thepc51/3 of the Bruggeman formula which
often constitutes an overestimation.
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APPENDIX A: QUADRATIC FLUCTUATIONS
OF THE FIELD

For completeness, we give here the demonstration of
~35! @30#. Volume averages are identified to statistical on
Because W* 5(1/2)^sE2&5(1/2)(npnsn^E

2&n , where
^•&n denotes an average on the phasen on which the con-
ductivity sn is constant, the effective conductivity reads

seff5(
n

pnsn

^E2&n

E0
2

. ~A1!

On the other hand,seff has to be a homogeneous function
degree 1 of thesn , whence

seff5(
n

sn

]seff

]sn
. ~A2!

Comparing both equations yields the values of the^E2&n and
consequently that of̂E2&5(npn^E

2&n . Equation~35! fol-
lows. We note that ifseff5^s& ~an exact upper bound for th
effective conductivity!, then ^DE2&50. Therefore, seff
5^s& defines a trivial model of a medium which is a com
posite, but from which field fluctations are nonetheless
sent.

APPENDIX B: CALCULATIONS IN THE ‘‘ONE-
IMPURITY’’ APPROXIMATION

The approximation which leads to Eq.~40! is built as
follows. We first expand the exponential
he

is

W

-
e

q.
.

-

^e2b(He2H0)&05 (
k>0

~2b!k

k!
^~He2H0!k&0 . ~B1!

SinceH0 is nonrandom, using the Hamiltonian densityw0
defined in Eq.~38! andDwx@E(x)# defined by Eq.~39! we
can rewrite the differenceHe2H0 as

He2H05E dx DH~x!, ~B2!

where

DH~x!52
1

bv
ln^e2bvDwx[E(x)]&. ~B3!

The one-impurity approximation consists in writing (k>1)

~He2H0!k5E dx1 . . . dxkDH~x1! . . . DH~xk!

~B4a!

.vk21E dy DH~y!k. ~B4b!

The last expression only retains contributions from identi
points in Eq.~B4a!. Summing back the series in~B1!, and
using ~B3! yields

^exp@2b~He2H0!#&0.11E dy

v
^I~y!21&, ~B5!
I~y!5

E D̃~Ea!expF2bE dx$w0@E~x!#1vDwx@E~x!#d~x2y!%G
E D̃~Ea!exp@2bH0#

, ~B6!
-

a-
where a one-impurity-type integral is involved. Since t
fundamental size of the theory (;v1/d) is much smaller than
the volumeV51 of the system, and since the latter is stat
tically translation invariant, the outer integral overy is re-
dundant with the disorder average, and can be dropped.
therefore arrive at Eq.~40!.

When b→`, the functionalI(y) can be computed ex
actly. Let us briefly indicate how to do it. We first introduc
the notationhW for vectors of dimensionnd, and components
hi

a , with a51, . . . ,n, i 51, . . . ,d. Hence, Dwy@E(y)#

[Dwy„EW (y)…. The next step is to use the formal identity

e2bvDwy(EW )5E dhW dhW 8

~2p!nd
e2 ihW •hW 8e2bvDwy

„2 i ~]/]hW 8!…eihW 8•EW

~B7!
-

e

to write the numerator of Eq.~B6!, which we denote hereaf
ter by J(y), as

J~y!5E dhW dhW 8

~2p!nd
e2 ihW •hW 8e2bvDwy„2 i (]/]hW 8)…

3E D̃E e2(b/2)*dx EW (x)•M̃•EW (x)1 ihW 8•EW (y), ~B8!

whereM̃ is the matrix defined from the replica-coupling m
trix M in w0 by M̃ i j

ag[Magd i j . After an integration over the

fields E and f implied in the measureD̃E @which can be
easily done using the Fourier components off, and withy
50 since Eq.~40! is independent ofy], J reads, up to in-
essential factors@29#
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J~y!5expF2~b/2!(
ag

MagE0
2G E dhW dhW 8

~2p!nd
exp(2 ihW •hW 8)

3expF2vbDwyS 2 i
]

]hW 8
D G

3exp@ ihW 8•EW 02hW 8•M̃ 21
•hW 8/~2bvd!#. ~B9!

Formally expanding exp(2vbDwy) in powers of2 i ]/]hW 8,
and carrying out successive integrations by parts overhW 8
yields

J~y!5FDet~M !S vbd

2p D nGd/2

3expF2~b/2!(
ag

MagE0
2G

3E dhW exp@2~vbd/2!~EW 02hW !•M̃•~EW 02hW !

2vbDwy~hW !#, ~B10!

where the determinant is evaluated in replica space. Fin
I(y)5J(y)/J(y;Dwy50):

I~y!5FDet~M !S vbd

2p D nGd/2E )
a

dha

3expF2vbH d

2(ag
Mag~E02ha! i~E02hg! i

1Dwy@h#J G . ~B11!

For anyDwy , this integral over the replicated vector fieldh
can be computed exactly using a saddle-point method@36# in
the limit b→`, as announced. This allows for a possib
extension of the theory to nonlinear media in the ‘‘on
impurity’’ approximation. Here, for the linear problem a
hand, Eq.~B11! is a simple Gaussian integral. SettingDs
5s2s0 and

m5S 11
Ds

ds0
D 21

, ~B12!

we obtain

ln I~y!5F2
bv
2

Ds mE0
21

d

2
~ ln m2bvqsmE0

2/d!Gn
1O~n2!, ~B13!

from which follows Eq.~42!.

APPENDIX C: CALCULATION IN THE ‘‘CUMULANT
SERIES’’ APPROXIMATION

We have to computêHe&0 and ^H0&0 in Eq. ~54!. The
calculation of^H0&0 is easy with the methods already em
ployed, and yields
y,

-

lim
n→0

^H0&0 /n5
1

2
s0E0

2 . ~C1!

As to ^He&0, we first expandHe @Eq. ~13!# in the cumulants
Ck of the disorder averages ofs(x), according to their defi-
nition by the generating function (X is a generic expansion
variable!

ln^eXs&5 (
k>1

Xk

k!
Ck~s!. ~C2!

We therefore have

He52
1

b (
x

(
k>1

1

k! F2
bv
2 (

a
Ea~x!2G k

Ck~s!. ~C3!

We deduce that

1

n
^He&052

1

Vb(
x

(
k>1

~2bv !k

k!
Ck~s!Ck~E2/2!,

~C4!

where

Ck~E2/2!5
1

nK F(
a

Ea~x!2/2G kL
0

~C5!

~because of statistical homogeneity, these coefficients do
depend on the position variablex). It is convenient to intro-
duce the following generating functionZ(X) in order to
compute theCk :

Z~X!5 (
k>1

~2X!k

k!
Ck~E2/2!

5
1

n H K expF2
1

2
X(

a
Ea2~x!G L

0

21J
5

1

n
lnK expF2

1

2
X(

a
Ea2~x!G L

0

1O~n!. ~C6!

SettingAag5dag1(X/vbd)@M 21#ag, we obtain@29#

Z~X!52
1

2n H d Tr Ln A1XE0
2(

ag
@A21#agJ 1O~n!

~C7!

~the trace and the logarithm act in the replica space!.
Expanding Eq.~C7! in powers ofX then allows for the

identification

Ck~E2/2!5
k!

2 S 1

vbdD kd

n

3F1

k
Tr~M 2k!1vb dE0

2(
ag

@M12k#agG1O~n!.

~C8!

Use of this expression in Eq.~C4! cancels the convergenc
factor k!: we reintroduce it by inserting the identity
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1

m! E0

`

du e2uum51, ~C9!

applied tom5k21 andm5k in the resulting cumulant se
ries. This permits its Borel summation, which brings in t
functionshm(x) defined by Eq.~C11!. This results in

1

n
^He&052

1

nFd

2
E0

2(
ag

@Mh0~M 21/d!#ag

1
1

2vb
Tr h21~M 21/d!G1O~n!, ~C10!

where we defined the family of functions

hm~z!5E
0

`

du ume2u ln^e2usz& ~m.22!. ~C11!

Note for further use that
ia
o

ys

.

ry

ttic

-

-

hm8 ~z!5
1

z
@hm11~z!2~k11!hm~z!#. ~C12!

For M given by Eq.~29!, the different terms in Eq.~C10!
are

lim
n→0

1

n (
ag

@Mh0~M 21/d!#ag5s0h0„1/~ds0!…,

lim
n→0

1

n
Tr h21~M 21/d!5dh21„1/~ds0!…

1vb ds0qh0„1/~ds0!…E0
2 ,

~C13!

which leads to Eq.~55!.
ed-
A.

.

n,
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